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Abstract. This paper presents a fault diagnosis technique in three-
phase induction motors (IM) utilizing stator current signature as feature
input to four different machine learning algorithms. The performance
of k-Nearest Neighbour(kNN), Support Vector Machine (SVM), Logistic
Regression (LR), and Random Forest (RF) classifiers has been analyzed
for classifying external faults and abnormalities in 3-phase IM. A com-
parative evaluation of instantaneous and RMS currents has been carried
as feature input for classifying Normal Load (NL), Overload (OL), Over-
voltage (OV), Undervoltage (UV), Single Phasing (SP), and Voltage Un-
balanced (VUB) conditions. Stator currents from both the experimental
setup and simulation have been used to evaluate performance. The anal-
ysis suggests that the RMS current-based SVM classifier performed con-
sistently and reliably with simulation and experimental datasets demon-
strating better-generalized capabilities.

Keywords: Fault diagnosis· Three-phase induction motor· Stator cur-
rent · Machine learning algorithms

1 Introduction

Among the different types of electric motors, IMs are the most widely used
type, and this popularity is justified by their exceptional performance in dif-
ferent fields. IMs have consistently demonstrated their effectiveness due to sev-
eral fundamental features that are desirable in a range of applications, including
cost-effective operation, durability, high efficiency, and reliability, minimal main-
tenance requirements, and high starting torque[12]. The reliable operation and
efficiency of three-phase IMs can be compromised by various internal and exter-
nal faults [11]. Internal faults are faults that originate within the motor itself,
such as short circuits and bearing faults, while external faults are faults that
arise from external factors impacting the motor’s performance.
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One critical external fault is SP, resulting from the loss of one phase in the
power supply due to blown fuses, damaged lines, or faulty connections. IMs
facing SP conditions typically struggle to initiate, and if operational, experience
a substantial torque reduction. This situation may lead to increased current
imbalance, excessive vibration, decreased efficiency, and the imminent risk of
motor burnout [2].

VUB, another significant external fault disturbance, arises from unequal volt-
ages across the three phases due to faulty connections, overloaded lines, or unbal-
anced source voltage. Acceptable voltage unbalance is generally defined within
a 5% difference between phases. Exceeding this threshold can result in signifi-
cant performance degradation, manifesting as increased rotor current, excessive
vibration, reduced efficiency, and potential bearing damage [7].

Voltage fluctuations beyond the rated range introduce OV and UV condi-
tions. OV, exceeding 110%, induces increased iron losses, increased torque, and
potential insulation breakdown. UV, falling below 90% of the rated voltage,
poses risks of reduced torque, heightened current, and overheating. Both sce-
narios jeopardize motor performance, carrying implications for efficiency and
insulation integrity [17].

The OL conditions, stemming from prolonged operation above 110% of the
rated load, can result from excessive load demands, improper sizing, or jammed
mechanisms. Adverse effects include increased rotor current, excessive heat gen-
eration, heightened vibration, and the looming risk of winding insulation break-
down [16].

In contrast, operating under NL allows the motor to function within its in-
tended design parameters, ensuring optimal efficiency, performance, and lifespan.
Recent research underscores the significance of accurately identifying and main-
taining NL conditions. Real-time monitoring and data analysis play a crucial
role in distinguishing NL from early-stage fault conditions, enabling preventive
maintenance and mitigating potential damage [3].

Over the years, various methods have been employed for fault detection.
While conventional techniques were somewhat effective, Artificial Intelligence-
based approaches have emerged as superior, offering greater reliability and ro-
bustness. In this research, the primary objective is to assess and compare the
efficacy of four distinct models in classifying external faults/abnormalities in
three-phase IM utilizing stator current signatures. The outcomes of the pro-
posed work are anticipated to refine fault identification strategies, ensuring a
more balanced and efficient operation of three-phase IMs.

2 Literature review

In recent studies addressing fault diagnosis and condition assessment of three-
phase IMs, various methodologies leveraging machine learning techniques have
emerged. The authors in the work developed by Sandeep Sharma et al. [18]
proposed a Multi-Class Extreme Learning Machine (ELM) for external fault
classification. This approach utilized RMS values of 3-phase voltages and cur-
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rents, achieving robust identification of six fault types. Comparatively, another
recent work by Vanga et al. [20] introduced a Bidirectional Long Short Term
Memory (Bi-LSTM) network, demonstrating its efficiency in fault classification.
Leveraging line voltages and currents, the Bi-LSTM outperformed traditional
LSTM networks, showcasing advantages in convergence and accuracy.

In parallel, Chudasama et al. [6] presented a Subtractive Clustering-Based
Sugeno Fuzzy Inference System for external fault detection in low-voltage three-
phase IMs. This fuzzy logic-based method surpassed conventional thermal relays
in accuracy, providing a robust solution for fault identification. In [7] the authors
addressed fault monitoring and diagnosis using an Artificial Neural Network
(ANN) integrated into batch simulation. The simulated results demonstrated
that well-trained neural networks can precisely detect and diagnose early faults
in three-phase IMs, presenting a reliable and effective protection scheme.

A practical approach for external fault identification in three-phase IMs us-
ing a Proximal Support Vector Machine (PSVM) was explored in the research of
[15] where the PSVM algorithm showcased faster investigations, leading to a re-
duction in computational load. Furthermore, the study outlined in [12] presented
an ANN-based technique for identifying various faults in three-phase IMs. Their
approach, utilizing three-phase currents and voltages, demonstrated effectiveness
in fault identification during simulated and online testing.

Adding to this discourse, a novel approach for external fault identification in
three-phase IMs using Motor Electrical Signature Analysis (MESA) was investi-
gated in the study conducted by the authors of [5]. The research delves into the
exploration of multilabel classification techniques, employing Ensemble Bagged
Tree and Support Vector Machine , demonstrating their effectiveness even in the
presence of noise in the dataset.

Nonetheless, the existing body of research, as outlined in the reviewed pa-
pers, has not collectively implemented diverse models for both hardware and
simulation data, including features like RMS and instantaneous current, to offer
a comprehensive comparative analysis. The proposed work utilizes stator current
signature for fault diagnosis in three-phase IMs.

3 Methodology

In the course of its operational lifespan, a three-phase IM experiences fluctuations
in loads and exposure to various environmental conditions. These factors play
a significant role in influencing the motor’s overall performance and longevity.
In the context of this research, the focus lies on the analysis of external faults
in IMs, specifically those arising from variations in load, voltage conditions, and
SP incidents. To achieve this, various models were implemented to discern dis-
tinct fault signatures present in the instantaneous and RMS current data. In the
proposed work KNN, SVM, LR, and RF were selected for a comprehensive com-
parison and in-depth study. Key theoretical principles and parameters employed
in the analysis of fault classification are discussed for each technique.
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3.1 K-Nearest Neighbors (KNN)

KNN stands out as a straightforward yet powerful algorithm for classification
and regression[9]. Its principle is based on assigning a data point’s class by
considering the majority class among its k nearest neighbors. The versatility
and non-parametric nature of KNN contribute to its suitability across diverse
applications. To understand KNN for classification better, refer to [1].

3.2 Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm utilized for both classifica-
tion and regression tasks, with Support Vector Classifier (SVC) [4] specifically
employed for binary and multiclass classification tasks [13]. The fundamental
concept of SVC is to find the optimal hyperplane that maximally separates dif-
ferent classes in the feature space. The algorithm works by identifying support
vectors, which are data points that lie closest to the decision boundary. For more
insight into the mechanisms of the SVM algorithm reference [4] is recommended.

3.3 Logistic Regression (LR)

LR is a widely used classification algorithm[10] that models the probability of a
data point belonging to a specific class. It utilizes the logistic function to map
the linear combination of input features to a probability score. In this study,
Multinomial Logistic Regression is applied as it is used to model the relation-
ship involving a categorical dependent variable with more than two categories.
Reference [19] is advised for a better understanding of the LR model.

3.4 Random Forest (RF)

RF is an ensemble learning algorithm [8] that builds a multitude of decision
trees during training. For classification tasks, each tree independently predicts
the class, and the final output is determined by voting [14]. The ensemble na-
ture of RF enhances its resilience to noisy data and contributes to improved
generalization performance.

4 System Modelling

4.1 Simulation Model

The simulation model of the proposed method is shown in Fig.1. The model
includes a three-phase, 4kW/5.4 HP, 400 V, 50 Hz, 4-pole squirrel-cage IM de-
veloped in MATLAB/Simulink software. The rated load and speed of the motor
are 26.72 N-m and 1430 RPM. Three-phase instantaneous and RMS currents
have been utilized as feature input to the classifiers for classifying external faults
as shown in Fig 1.
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Fig. 1. Proposed fault diagnosis schem

Various external faults/abnormalities such as OL, OV, UV, VUB and SP
have been simulated at different load conditions. Figure 2 shows instantaneous
currents for above-mentioned conditions.

Fig. 2. Instantaneous currents for (a) NL, (b) OL, (c) OV, (d) UV, (e) SP, and (f)
VUB conditions

Table 1 shows values selected for different operating conditions of three-phase
IM. Three different load conditions have been considered for simulating various
faults and abnormalities.
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Table 1. Parameters for various fault/abnormal conditions in IM.

Operating Condition Values Number of Cases
Overload 111% to 120% of Rated Load 10× 3∗ = 30

OV 112% to 121% of Rated Voltage 10× 3∗ = 30

UV 89% to 80% of Rated Voltage 10× 3∗ = 30

Voltage Unbalance

VR=100%, VY=94%, VB=92%
VR=100%, VY=92%, VB=94%
VR=94%, VY=100%, VB=92%
VR=92%, VY=100%, VB=94%
VR=94%, VY=92%, VB=100%
VR=92%, VY=94%, VB=100%
(Similarly for 100%, 93%, and
91% of rated voltage)

12× 3∗ = 36

Single Phasing Instances of SP w.r.t VR
(0°, 30°, 60°, 90°, 115°) 5× 3# × 3∗ = 45

Normal Condition 75% to 100% of Rated Load 26
Total No. of Cases 197

* Three different load conditions: 100%, 90%, and 80% of rated load
# Single-phasing condition in each phase: R, Y, and B

Further, out of total cases simulated, cases for training and testing of the
algorithms have been separated out as mentioned below in Table 2.

Table 2. Parameters for various fault/abnormal conditions in IM.

Operating
Condition

Training
Parameters

Training
Cases

Testing
Parameters

Testing
Cases

Overload 112%, 114%, 116%, 118%,
and 120% of rated load 15 111%, 113%,115%, 117%,

and 119% of rated load 15

Over Voltage 112%, 114%, 116%, 118%,
120% of rated voltage 15 113%, 115%, 117%, 119%,

121% of rated voltage 15

Under Voltage 88%, 86%, 84%, 82%,
80% of rated voltage 15 89%, 87%, 85%, 83%,

81% of rated voltage 15

Voltage Unbalance 100%, 94%, 92% of
rated voltage 18 100%, 93%, 91% of

rated voltage 18

Single Phasing 0°, 60°, 115° 27 30°, 90° 18
Normal Conditions 75% to 87% Load 13 88% to 100% Load 13

Total No. of Cases 103 94

5 Experimental Set up

The experimental set up in the laboratory environment consists a set of a three-
phase, 3.7 kW/5 HP, 415 V, 7.5A, 50 Hz, 1425 RPM, 4-pole IM coupled with
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a 3kW, 230V, 10.1A, 1500 RPM DC shunt generator. Figure 3 shows the ex-
perimental setup of three-phase IM. The DC generator is loaded with a lamp-
load. Three-phase instantaneous currents were recorded using current probes
and YOKOGAWA DLM 2024 digital storage oscilloscope (DSO). Subsequently,
RMS currents were derived from instantaneous signals. From the experimental
set-up various conditions of OL (9 cases), UV (16 cases), SP (16 cases), and
VUB (16 cases) have been recorded. Due to supply voltage limitations, the OV
condition was not considered for the experimental setup.

Fig. 3. Experimental setup of three phase IM coupled to DC generator.

An in-depth analysis was conducted utilizing simulation and experimental
setups, where the currents obtained from both setups were employed as fea-
ture inputs for the classifiers. Recognizing the importance of parameter selection
on the performance of machine learning classifiers, a meticulous approach was
adopted in this research. Specifically, the parameters for the classifiers were care-
fully chosen through a systematic grid search method coupled with a rigorous
five-fold cross-validation technique. The results of this parameter optimization
are documented in Table 3, highlighting the best values identified through the
aforementioned grid search and cross-validation techniques. The proposed work
was carried out using Python 3.11.0 on a computer having an Intel Core i5-8250
CPU @ 1.65 GHz, 16 GB RAM, and 2 GB NVIDIA GeForce 940MX GPU.
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Table 3. Model Parameters

Classifier Best Hyperparameters
kNN n_neighbors: 3, weights: distance
SVM C: 100, gamma: 0.0001, kernel: rbf
LR C: 100, penalty: l2, solver: liblinear
RF max_depth: 10, max_features: log2,

min_samples_leaf: 1, min_samples_split: 2,
n_estimators: 50

6 Results and Discussion

The performance evaluation of the classifiers with post-fault five cycles instan-
taneous and RMS currents for classifying external faults/abnormal conditions
in three-phase IM is presented below. It is noteworthy that the classifiers were
trained and tested using cases with distinct parameter values.

6.1 Performance with Simulation Data

The performance of the classifiers in terms of class-wise classification accuracy
is depicted in Table 4 and 5 with instantaneous and RMS currents, respectively.

Table 4. Class-wise performance with instantaneous currents

Classifier Class wise performance
(% Accuracy)

Overall
% Accuracy

NL OL OV UV SP VUB
kNN 100 100 100 98.92 98.92 100 98.92
SVM 100 100 100 100 100 100 100
LR 100 100 100 100 98.92 98.92 98.92
RF 100 100 100 100 100 100 100

Table 5. Class-wise performance with RMS currents

Classifier Class wise performance
(% Accuracy)

Overall
% Accuracy

NL OL OV UV SP VUB
kNN 86.02 90.32 100 100 100 86.02 86.02
SVM 97.85 97.85 100 100 100 100 97.84
LR 100 100 100 100 100 100 100
RF 84.95 100 100 100 100 84.95 84.94

The overall performance in terms of Train and Test accuracies, F1 score, CV
score, Recall and Precision is shown in Fig 4 with simulation data.
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Fig. 4. Performance parameters with simulation data (a) Instantaneous, and (b) RMS
currents

From above-mentioned results, it can be observed that the performance of
SVM and LR is reliable with instantaneous as well as RMS currents achieving
consistent score in all the performance parameters. The performance of RF is
identical to SVM with instantaneous currents thus overlapping in Fig 4 (b).
Nevertheless, with RMS currents RF classifier performance has declined signifi-
cantly. Similarly, the performance of the kNN classifier also declined with RMS
currents.

6.2 Performance with Experimental Data

Out of a total of 57 experimental cases recorded for four different operating
conditions, 29 (OL-5, UV-8, SP-8, and VUB-8) cases were used for training and
the performance of the trained model is evaluated with the remaining 28 cases.
Therefore, the train-test ratio is nearly 50%. The class-wise performance with
the experimental dataset is shown in Table 6 and Table 7 for instantaneous and
RMS currents, respectively.

Table 6. Class-wise performance with RMS currents

Classifier No. of misclassified cases

Total
misclassified

cases
(out of 28)

Overall
% Accuracy

OL
(out of 4)

UV
(out of 8)

SP
(out of 8)

VUB
(out of 8)

kNN 0 0 1 0 1 96.42
SVM 0 0 1 0 1 96.42
LR 0 0 2 2 4 85.71
RF 0 0 0 6 6 78.57
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Table 7. Class-wise performance with RMS currents

Classifier No. of misclassified cases

Total
misclassified

cases
(out of 28)

Overall
% Accuracy

OL
(out of 4)

UV
(out of 8)

SP
(out of 8)

VUB
(out of 8)

kNN 0 0 0 0 0 100
SVM 0 0 0 0 0 100
LR 0 0 1 0 1 96.42
RF 0 0 0 0 0 100

The overall performance with the experimental dataset is shown in Fig 5.

Fig. 5. Performance parameters with experimental data (a) Instantaneous, and (b)
RMS currents

In comparison to simulation results, the performance of LR and RF classifiers
declined significantly with experimental instantaneous signals. Although the test
accuracy of kNN and SVM is consistent with experimental instantaneous signals,
a poor CV score indicates chances of overfitting/underfitting of the models and
may not perform well on new, unseen data. Considering the accuracy, the per-
formance of SVM and LR classifiers is found reliable with experimental RMS
current signals. However, considering overall performance analysis, the SVM clas-
sifier is found to be consistent and reliable for external faults and abnormalities
classification using RMS current signals. The SVM classifier has achieved overall
classification accuracies of 97.84% and 100% with RMS currents for simulation
and experimental data, respectively.
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7 Conclusion and Future Work

This study thoroughly assesses the effectiveness of instantaneous and RMS cur-
rents as feature inputs to the classifiers for classifying external faults and ab-
normal operating conditions in three-phase IM. Through simulations and exper-
imental setups, kNN, SVM, LR, and RF classifiers were scrutinized using raw
current signals.

Among the classifiers examined, SVM consistently outperforms the others,
showcasing superior and consistent performance with raw current signals. Partic-
ularly, SVM exhibits better-generalized capabilities compared to the alternatives
considered in this study. Moreover, the performance of SVM with RMS currents
stands out, showing promise in comparison to using instantaneous currents.

Given the observed inconsistencies in classifier performance with instanta-
neous currents, future endeavors will explore employing diverse signal processing
techniques to extract pertinent features from instantaneous currents. This av-
enue holds the potential for enhancing classifier performance and refining fault
classification in three-phase IMs.
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