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Abstract. Short-Term Load Forecasting is essential in estimating fu-
ture energy demand in power systems, energy utilities, and industrial
settings. For energy suppliers and other players in the markets for elec-
tric energy generation, transmission, and distribution, load forecasting is
a crucial instrument. Additionally, the prediction of load is essential for
effectively planning and overseeing power system operations. Load fore-
casting has significant effects on a variety of power system applications,
such as energy production, load shedding, contract analysis, and infras-
tructure construction. In this study, the authors compare and contrast
three forecasting methods for short-term load forecasting namely, Gradi-
ent Boosting (referred to as GB), Random Forest (referred to as RF), and
K-Nearest Neighbors (abbreviated as KNN). The historical load (annual)
and New York calendar data are input parameters into the forecasting
models for each of these strategies. The research assesses how well these
methods perform in terms of Root Mean Square Error (RMSE), Mean
Absolute Error, R2-score, and computing time. The comparative analysis
finds that KNN is the most effective option, with an amazing R2-score
of 98.43%, followed by RF at 97.12% and GB at 95.52%. Furthermore,
KNN offers tremendous computing efficiency, emphasizing its suitability
for real-time applications. This work lays the door for improved load
forecasting in dynamic energy systems by using the capabilities of these
models.

Keywords: Short-term load forecasting · Machine learning algorithms
· K-Nearest Neighbors (KNN) · Electricity demand estimation

1 Introduction

The electricity sector faces increasing challenges due to the variability of load
demand, especially with the growing adoption of renewable energy sources. Load
forecasting employs various techniques and methods to predict future electricity
demand accurately. Some of the different techniques commonly used for load
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forecasting [13] include time series analysis, machine learning techniques (like
neural networks, decision trees, and regression models), statistical methods, and
artificial intelligence-based approaches [9,22].

Time series analysis [1] is a fundamental technique that involves looking at
historical load data to spot patterns and trends. To produce predictions, machine
learning algorithms use past data and a variety of features, providing flexibility
and adaptability. Seasonality and trends are well-captured by statistical tech-
niques like ARIMA (AutoRegressive Integrated Moving Average), which has a
long history [28]. The ability of artificial intelligence techniques to manage in-
tricate relationships inside data is helping them gain prominence. Additionally,
the integration of deep learning models [26] can enhance the capacity to capture
complex temporal dependencies in load forecasting.

Depending on the time frame and level of detail, there are different types of
load forecasting. The most common type is short-term load forecasting (STLF),
which foresees demand within hours or days and is useful for grid management
and day-ahead market activities. The prediction horizon is extended to weeks
or months with the help of medium-term load forecasting (MTLF), which is
useful for scheduling maintenance and allocating resources. In order to help with
decisions about infrastructure construction and capacity growth, long-term load
forecasting (LTLF) entails predicting demand years in the future [32,14].

Accurate short-term load forecasting is crucial for ensuring efficient energy
distribution, resource allocation, and grid stability. Traditional methods [20,31]
and machine learning techniques have been employed to address this challenge.
In this research work, we aim to compare the effectiveness of various forecasting
methods to identify the most accurate and reliable approach for short-term en-
ergy consumption prediction. Load forecasting is vital for optimizing energy use
in the electrical power system [6]. It enables efficient management of spinning re-
serve capacity, improves device repair scheduling, and informs unit commitment
decisions. Aligning electrical generation with load demand is crucial for optimal
power system performance. The utilization of this study is anticipated to rectify
the imbalance between energy supply and demand.

2 Related Work

Numerous studies have addressed short-term load forecasting using both tra-
ditional and machine learning methods. Researchers have explored techniques
[22,9] like recurrent neural networks (RNNs), K-Nearest Neighbors (KNN) [41],
support vector machines (SVM) [29], Random Forest (RF) [34], ensemble meth-
ods, artificial neural networks (ANN) [3], convolutional neural networks (CNN)
[40], long short-term memory (LSTM) [7], and others. Energy forecasting in
this area has long been done using time series models that capture seasonality
and trends in past consumption data, for instance, the autoregressive integrated
moving average model (ARIMA) [28] or the seasonal autoregressive integrated
moving average (SARIMA) [33,24]. ML and DL algorithms are gaining popular-
ity in time series data analysis.SVM has been successfully used to forecast en-
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ergy consumption in low-energy buildings [29] as well as cooling load in HVAC
systems [15]. Strictly choosing pertinent data allowed for increased prediction
accuracy [27]. Many researchers have used KNN for forecasting tasks, and the
outcomes have shown its capacity to provide precise forecasts. In the context
of power system load forecasting, the K-Nearest Neighbors (KNN) model [4]
has demonstrated superior performance, surpassing polynomial and sinusoidal
regressions. Additional research findings are showcased in [5,41,19]. These stud-
ies have demonstrated the importance of accurate load forecasting for efficient
energy management. Nonetheless, as load forecasting continues to evolve, chal-
lenges persist in effectively addressing Real-time data and handling complex
relationships.

3 Dataset description and Pre-Processing

The dataset employed in this study serves as the foundation for training and
testing the predictive models, and the analysis was conducted using Python
version 3.11.0. Electrical energy demand information from 1st Jan 2020 to 31st
Dec 2020, one-year real-time load data is gathered from NYISO. It encompasses
a comprehensive collection of 107,000 entries, representing a diverse array of load
demand instances. The recorded data set is in a five-minute time interval. The
dataset is segregated into two principal components: a time series feature and
the corresponding target variable, which encapsulates the actual load demand.
In line with standard data partitioning practices, the majority of the dataset,
comprising 80%, was used for model training, with the remainder allotted for
subsequent testing.

Visualization of Load Fluctuations: Insights from the Dataset The
dataset visualization provided in Figures 1 and 2 offers insightful information
about the variations in annual load. Figure 1 shows the load variations over the
course of a year, with each color representing a specific month. The y-axis denotes
the load in megawatts (MW), while the x-axis represents time in months. Figure
2, a Heatmap, provides a more detailed view of the monthly load dispersion in
megawatts (MW) for each month and day of the entire year. The horizontal axis
depicts the months of the year, while the vertical axis represents the days of the
month. The color scale is provided on the heat map’s right-hand side. The color
of each cell represents the magnitude of the load demand for a particular month.
The deeper the hue, the greater the load demand, while the paler the color, the
lower the load demand.

During July, the deep blue coloring indicates a significant load dispersion.
This marks the height of the summer season, characterized by heightened energy
consumption due to increased reliance on cooling systems and other appliances.
In contrast, the pale yellow shades in April and May suggest a more consistent
and stable load demand. During these months, energy consumption tends to
exhibit less fluctuation, aligning with the milder conditions of the spring season.
January to April and July to September display gradient shifts, with deepening
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blues signifying increasing load demand during seasonal transitions. These shifts
involve heating and cooling adjustments.

Finally, from November to December, as winter approaches, the deepening
blue shades reveal an uptick in load demand. This trend corresponds to the in-
creasing need for heating systems to maintain comfortable indoor temperatures.
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Data preparation: The preparation of the dataset involved a series of metic-
ulous data preprocessing steps, crucial for ensuring the quality and reliability of
subsequent model predictions. Each approach, in particular, underwent unique
data preprocessing methods adapted to its particular needs.

Features and Target: The dataset is distinguished by two key components:
the feature and the target. The single time series feature incorporates tempo-
ral information about the load demand instances, acting as the foundation for
prediction models. Concurrently, the target variable represents the actual load
demand values, serving as the standard against which model predictions are
compared.

Null Value Handling: Finding and addressing any null values that were
present in the dataset was one of the steps. Only two instances of the 107,000
records had null values. These null values were seamlessly substituted using the
interpolation method, maintaining the dataset’s integrity.

Normalization: The dataset was normalized to provide uniform scale and con-
vergence during model training. In order to prevent the dominance of certain
features in the modeling process, this technique ensured that all features shared
similar scale properties.

4 Methodology

To address the issues provided by dynamic load demand, a plethora of solu-
tions in the domain of Short-Term Load Forecasting (STLF) have arisen. In our
dataset, we evaluated six models. Nonetheless, given to their greater predictive
performance, KNN, RF, and GB were chosen for comparison and study. Some
major theoretical concepts and parameters used in load forecasting analysis are
covered for each technique. Table 1 describes the input parameters under con-
sideration.

4.1 Gradient Boosting (GB) Model

Gradient Boosting [27] is an effective boosting technique that transforms mul-
tiple weak learners into strong ones. Each subsequent model is trained using
gradient descent [25] to minimize the loss function of the previous model, which
can be metrics like mean square error or cross-entropy[12]. The name "Gradient
Boosting" comes from the fact that the technique is focused on minimizing a
loss function [11].



6 Hagos L.Shifare et al.

A description of the operation of gradient boosting for regression
Gradient boosting Regressor [37] starts with the setup of a fundamental model,
frequently a simple decision tree referred to as a "weak learner" [39]. The model is
then used to compute residuals, which indicate prediction mistakes. These resid-
uals direct the training of a new weak learner, which seeks to identify patterns or
mistakes that have not yet been addressed [27]. The outputs of the new learner
are added to the predictions made by the current model after being weighted
by a small learning rate. Multiple weak learners participate in this iterative pro-
cess, which emphasizes residual minimization and goes on until a predetermined
criterion is reached. This leads to less bias and better predictive accuracy as
contributions from all poor learners are combined for the final prediction. To
understand Gradient Boosting for regression better, refer to [23,17,27].

4.2 Random Forest (RF) Model

Random forests represent a significant enhancement of bagging by construct-
ing a sizable ensemble of trees that are uncorrelated with each other, followed
by averaging their predictions [34]. The main concept of bagging is to reduce
variance by averaging several noisy but roughly unbiased base models. Hence,
it is an ensemble machine-learning approach that combines different decision
trees to increase prediction accuracy and decrease overfitting. When compared
to individual decision trees, RF is shown to have better prediction performance
and robustness. It doesn’t experience the commonly known issues found in indi-
vidual trees, such as unstable divisions and a lack of smoothness[42].RF can be
employed for classification as well as regression. We advise studying references
[34,42,35] for a more thorough understanding of the inner workings of the RF
algorithm.

In this study, we used Random Forest for regression analysis, concentrating
on its use for Short-Term Load Forecasting (STLF). In the following flow chart
3, we illustrate the Random Forest (RF) process, which incorporates an essential
technique known as ’bagging.’ The term Bagging originates from the acronym
formed by Bootstrap Aggregating [42]. As its name suggests, Bagging primarily
consists of two essential elements: bootstrap and aggregation. Bootstrapping
[23,17] involves the random sampling of the training dataset with replacement
to create multiple subsets (bootstrap samples). These subsets are used to train
individual decision trees within the Random Forest. In order to provide a more
reliable and accurate overall prediction, many decision trees’ predictions are
combined in a process known as "aggregation." Aggregation [30,16] enhances
the model’s capability by lowering the variance of the predictions made by each
individual decision tree in the RF, which each makes its own forecast based
on the training data. Furthermore, the incorporation of Bagging in Random
Forest minimizes the risk of overfitting [36], as each decision tree is trained on
a different subset of the data. This diversity in training improves the model’s
generalization to unseen data, contributing to its robust performance in Short-
Term Load Forecasting. The effectiveness of the Random Forest approach lies
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in its ability to capture complex relationships in the data, making it a powerful
tool for accurate and reliable predictions in energy forecasting applications.

Load forecasting dataset (input)

Tree 1 Tree nTree 2 (...)

Prediction 1 Prediction nPrediction 2

Mean of all the Predictions

Random forest Prediction output (MAE, RMSE, R2 Score)

(...)

BOOTSRRAP

AGGREGATION

Fig. 3. Flow chart of RF algorithm

4.3 K-Nearest Neighbors (KNN) Model

Nearest Neighbor algorithms are among the simplest of all machine learning
algorithms. K-Nearest Neighbors (KNN) [41] regression is a non-parametric [5],
instance-based learning algorithm used for predictive modeling and regression
analysis. It is a simple yet effective technique used for short-term load forecasting
(STLF) due to its intuitive nature and adaptability to various data patterns. The
method searches for the ’nearest neighbors,’ which are the data points closest
to the new data point [30] in the training dataset. Predicting the target value
for a fresh data point involves averaging the target values [21] of its k closest
neighbors in the training dataset. The general KNN regression formula is:

ŷ =
1

k

k∑
i=1

yi (1)

Where:
ŷ is the predicted target value for the new data point.
k is the number of closest neighbors to consider.
yi represents the target values of the k-nearest neighbors.

A distance function determines how close two points are to one another.This
measure is crucial in KNN algorithms, where it helps identify the nearest neigh-
bors of a given data point, enabling effective classification and regression tasks.
The subsequent equation is employed for calculating the Euclidean distance be-
tween two data points, X and Y, in a multidimensional space [38].
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Euclidean Distance(Di) =

√√√√ n∑
i=1

(Xi − Yi)2 (2)

Where:
n is the count of dimensions (attributes) in the data.

Xi and Yi denote the values of the i-th dimension for
data points X and Y respectively.

The formulas provided above are the core mechanism behind its predictive
power and make it a valuable tool in data-driven decision-making for load fore-
casting. For load forecasting, KNN analyzes the similarity between the input
time series and past occurrences to forecast future load demand. For a more in-
depth understanding of how the KNN algorithm operates we encourage readers
to refer to [30,38]. The workflow of a K-Nearest Neighbors (KNN) regression
model for load forecasting is illustrated visually in figure 4. It outlines the steps
involved in preparing data, setting up a model, training it, making a prediction,
evaluating it, and reporting evaluation metrics. With its capacity to unearth hid-
den patterns and adapt to shifting load demand circumstances, KNN regression
gives a significant edge in load forecasting. It thrives in capturing the complex
interactions between the input time series and the historical data, producing pre-
cise forecasts. Furthermore, the model’s interpretability and simplicity [18] make
it an attractive choice for practitioners seeking transparent insights into the load
forecasting process. Additionally, its non-parametric nature allows for flexibility
in handling diverse datasets. It has applications in areas including recommen-
dation systems, anomaly detection, and pattern recognition, demonstrating its
adaptability beyond load forecasting [2].

In the course of this research, a rigorous dataset preprocessing methodol-
ogy is implemented. This involves the conversion of the date-time feature into a
numerical representation and the normalization of both features and the target
variable through Min-Max scaling, preventing bias toward variables with larger
magnitudes and fostering improved model performance. The dataset is subse-
quently partitioned into distinct training and test sets, a standard practice in
machine learning evaluation. For model development, we employ the K-Nearest
Neighbors (KNN) algorithm with a configuration of twenty-four nearest neigh-
bors, selected through hyperparameter tuning. The careful selection of hyper-
parameters, guided by tuning, enhances the K-Nearest Neighbors algorithm’s
performance, optimizing its ability to capture intricate patterns in the data.
Post-training, a crucial step involves reverse-transforming the predicted values
to their original scale, facilitating a more meaningful interpretation of the results
in the context of the original dataset. This comprehensive approach, spanning
data preprocessing, model training, and result interpretation, serves as the foun-
dation for a robust and reliable comparative analysis in this research endeavor.



Comparative Analysis of STLF Using ML 9

Start

Load dataset

Testing (20%)Training (80%)

Initialize KNN model (K=24)

Calculate euclidean distance(D) to new
data point and select K-Nearest Neighbors

Evaluation metrics (RMSE, MAE,
R2-score) and Computation-Time

End

Fig. 4. Flow chart of KNN algorithm

Table 1. Model Parameters

Model Parameters
Gradient Boosting (GB) Number of estimators=100, Maximum

depth=11, Random state=42
Random Forest (RF) Number of estimators=100, Maximum

depth=16, Random state=42
K-Nearest Neighbors (KNN) Number of neighbors=24, p=3, Random

state=42

5 Result and Discussion

5.1 Assessment Measures

To evaluate the model’s precision in regression analysis, the metrics Mean Squared
Error, Root Mean Square Error, Mean Absolute Error, and R2-score or Coeffi-
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cient of Determination are used [8]. The mathematical expression of the metrics
is provided as follows where, ŷ represents the anticipated or forecasted value of
y, and ȳ denotes the average or mean value of y.

MSE =
1

N

N∑
i=1

(yi − ŷ)2 (3)

MSE (Mean Squared Error) [10] quantifies this difference by averaging the
squared values.

RMSE =
√

MSE =

√√√√ 1

N

N∑
i=1

(yi − ŷ)2 (4)

RMSE (Root Mean Squared Error) [8] is the square root of MSE, providing
another measure of error.

MAE =
1

N

N∑
i=1

|yi − ŷ| (5)

MAE (Mean Absolute Error) [10] quantifies the average absolute difference be-
tween predicted and actual values.

R2− score = 1−
∑

(yi − ŷ)2∑
(yi − ȳ)2

(6)

R2-score (Coefficient of Determination) gauges how well the model fits the data,
with values between 0 and 1, higher values indicate a better fit [10,38].

5.2 Experimental Result Analysis

The performance of our three models - GB, RF, and KNN - in short-term load
forecasting was evaluated using four key metrics: RMSE, MAE, R2-score, and
Computation-Time. Predictions are made for all months and for one random
month (November). The models underwent training on a dataset through the
use of 5-fold cross-validation and were evaluated using NMSE metric to prevent
overfitting or underfitting. Table 2 summarizes the performance metrics, and the
subsequent figures visually compare actual and predicted load consumption. GB
exhibited the weakest fit to actual load consumption, as the red and blue lines
shown in figure 5 and 6 consistently diverged. This stark divergence accentuated
GB’s lowest R2-score (0.9552), reflecting low performance in comparison to the
other models.GB is also taking more computational time, specifically 34.5761
seconds.
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Fig. 5. Actual vs predicted load consumption using GB model
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Fig. 6. Actual vs predicted load for one month with GB model

RF, though not matching KNN’s performance, demonstrated a commendable fit
to real load usage, with a reasonably low RMSE (0.0263), MAE (0.0161), and a
good R2-score of 0.9712. The graph in figure 7 and 8 indicates that while RF has
some inconsistencies and variations, the blue and red lines generally remain close.
However, RF displayed higher fluctuations in predicted values compared to KNN,
indicating slightly lower stability. It should be noted that RF required more
computational time, at 29.4186 seconds.While RF produced favorable results,
particularly in certain months, it displayed inconsistency in the summer months.
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Fig. 7. Actual vs predicted load consumption using RF model
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Fig. 8. Actual vs predicted load for one month with RF model

KNN emerged as the top-performing model, boasting the lowest RMSE (0.0194),
MAE (0.0156), and the highest R2-score (0.9843). The close alignment of the red
line (predicted) and the blue line (actual) in the graph 9 and 10 demonstrates
its outstanding accuracy and precision, as well as its stability, with minimal pre-
dicted value variations. Additionally, KNN exhibited remarkable computational
efficiency, taking only 0.0637 seconds. This impressive combination of RMSE,
MAE, R2-score, and Computation-Time makes KNN an ideal choice for our
predictive modeling needs.
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Fig. 9. Actual vs predicted load consumption using KNN model
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Fig. 10. Actual vs predicted load for one month with KNN model

Table 2. Performance Comparison of Machine Learning Models

Model RMSE MAE R2-score Computation-Time (sec)
GB 0.0328 0.0249 0.9552 34.5761
RF 0.02633 0.0161 0.9712 29.4186

KNN 0.0194 0.0156 0.9843 0.0637



14 Hagos L.Shifare et al.

6 Conclusion

This study aims to forecast electricity demand using machine learning algo-
rithms, with a primary focus on achieving the highest possible R2-score while
maintaining computational time as a crucial consideration in the prediction pro-
cess. The dataset employed for our analysis was sourced from NYISO, comprising
Real-Time Consumption Data. In this research project, we utilized three ma-
chine learning models: Gradient Boosting (GB), Random Forest, and K-Nearest
Neighbors (KNN). The optimal method has been determined through a rigor-
ous analysis of various statistical parameters, Incorporating Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), R2-score, and the time taken for
computation. During the summer season, Random Forest (RF) showed limited
performance, while Gradient Boosting (GB) exhibited underperformance during
the fall. In contrast, K-Nearest Neighbors (KNN) consistently outperformed both
RF and GB, delivering superior results with an impressive R2-score of 98.43%
across all months, alongside shorter computational times. This study highlights
the potential of KNN for enhancing load forecasting in real-time applications,
offering valuable insights for the energy sector’s future forecasting endeavors.

In forthcoming studies, we will broaden the scope of our forecasting models by
expanding their applicability. This will involve enhancing our existing models and
exploring additional features, such as temperature, to achieve greater accuracy in
real-time predictions. Additionally, we plan to extend our models to forecast PV
(photovoltaic) power and wind power, enabling a comprehensive and integrated
approach to energy demand and supply forecasting.

Acknowledgement The authors thank NYISO for granting the scientific com-
munity’s use of the load data for research purposes. Additionally, in order to
support such a sophisticated computational study, the authors would like to
thank Marwadi University, Rajkot for its computing resources.

References

1. Alqatawna, A., Abu-Salih, B., Obeid, N., Almiani, M.: Incorporating time-series
forecasting techniques to predict logistics companies’ staffing needs and order vol-
ume. Computation 11(7), 141 (2023). https://doi.org/https://doi.org/10.
3390/computation11070141

2. Anwar, T., Uma, V., Hussain, M.I., Pantula, M.: Collaborative filtering and knn
based recommendation to overcome cold start and sparsity issues: A comparative
analysis. Multimedia Tools and Applications 81(25), 35693–35711 (2022). https:
//doi.org/10.1007/s11042-021-11883-z

3. Arvanitidis, A.I., Bargiotas, D., Daskalopulu, A., Laitsos, V.M., Tsoukalas, L.H.:
Enhanced short-term load forecasting using artificial neural networks. Energies
14(22), 7788 (2021). https://doi.org/https://doi.org/10.3390/en14227788

4. Ashfaq, T., Javaid, N.: Short-term electricity load and price forecasting using en-
hanced knn. In: 2019 International Conference on Frontiers of Information Tech-
nology (FIT). pp. 266–2665. IEEE (2019). https://doi.org/https://doi.org/
10.1109/FIT47737.2019.00057

https://doi.org/https://doi.org/10.3390/computation11070141
https://doi.org/https://doi.org/10.3390/computation11070141
https://doi.org/https://doi.org/10.3390/computation11070141
https://doi.org/https://doi.org/10.3390/computation11070141
https://doi.org/10.1007/s11042-021-11883-z
https://doi.org/10.1007/s11042-021-11883-z
https://doi.org/10.1007/s11042-021-11883-z
https://doi.org/10.1007/s11042-021-11883-z
https://doi.org/https://doi.org/10.3390/en14227788
https://doi.org/https://doi.org/10.3390/en14227788
https://doi.org/https://doi.org/10.1109/FIT47737.2019.00057
https://doi.org/https://doi.org/10.1109/FIT47737.2019.00057
https://doi.org/https://doi.org/10.1109/FIT47737.2019.00057
https://doi.org/https://doi.org/10.1109/FIT47737.2019.00057


Comparative Analysis of STLF Using ML 15

5. Atanasovski, M., Kostov, M., Arapinoski, B., Spirovski, M.: K-nearest neighbor
regression for forecasting electricity demand. In: 2020 55th International Scientific
Conference on Information, Communication and Energy Systems and Technologies
(ICEST). pp. 110–113. IEEE (2020)

6. Azeem, A., Ismail, I., Jameel, S.M., Harindran, V.R.: Electrical load forecasting
models for different generation modalities: a review. IEEE Access 9, 142239–142263
(2021). https://doi.org/10.1109/ACCESS.2021.3120731

7. Chen, Z., Zhang, D., Jiang, H., Wang, L., Chen, Y., Xiao, Y., Liu, J., Zhang,
Y., Li, M.: Load forecasting based on lstm neural network and applicable to
loads of “replacement of coal with electricity”. Journal of Electrical Engineering
& Technology 16(5), 2333–2342 (2021). https://doi.org/https://doi.org/10.
1007/s42835-021-00768-8

8. Chicco, D., Warrens, M.J., Jurman, G.: The coefficient of determination r-squared
is more informative than smape, mae, mape, mse and rmse in regression analysis
evaluation. PeerJ Computer Science 7, e623 (2021). https://doi.org/https:
//doi.org/10.7717/peerj-cs.623

9. Cordeiro-Costas, M., Villanueva, D., Eguía-Oller, P., Martínez-Comesaña, M.,
Ramos, S.: Load forecasting with machine learning and deep learning methods.
Applied Sciences 13(13), 7933 (2023). https://doi.org/https://doi.org/10.
3390/app13137933

10. DataTechNotes: Regression model accuracy (mae, mse, rmse, r-
squared) check in r, https://www.datatechnotes.com/2019/02/
regression-model-accuracy-mae-mse-rmse.html

11. Di Persio, L., Fraccarolo, N.: Energy consumption forecasts by gradient boosting
regression trees. Mathematics 11(5), 1068 (2023). https://doi.org/https://
doi.org/10.3390/math11051068

12. GeeksforGeeks: Gradient boosting in ml, https://www.geeksforgeeks.org/
ml-gradient-boosting/

13. Habbak, H., Mahmoud, M., Metwally, K., Fouda, M.M., Ibrahem, M.I.: Load fore-
casting techniques and their applications in smart grids. Energies 16(3), 1480
(2023). https://doi.org/https://doi.org/10.3390/en16031480

14. Hammad, M.A., Jereb, B., Rosi, B., Dragan, D., et al.: Methods and models for
electric load forecasting: a comprehensive review. Logist. Sustain. Transp 11(1),
51–76 (2020). https://doi.org/10.2478/jlst-2020-0004

15. Hu, L., Zhang, L., Wang, T., Li, K.: Short-term load forecasting based on support
vector regression considering cooling load in summer. In: 2020 Chinese Control
And Decision Conference (CCDC). pp. 5495–5498. IEEE (2020). https://doi.
org/10.1109/CCDC49329.2020.9164387

16. Ibrahim, B., Rabelo, L., Gutierrez-Franco, E., Clavijo-Buritica, N.: Machine learn-
ing for short-term load forecasting in smart grids. Energies 15(21), 8079 (2022).
https://doi.org/https://doi.org/10.3390/en15218079

17. Lee, T.H., Ullah, A., Wang, R.: Bootstrap aggregating and random forest. Macroe-
conomic forecasting in the era of big data: Theory and practice pp. 389–429 (2020)

18. Li, F., Jin, G.: Research on power energy load forecasting method based on knn.
International Journal of Ambient Energy 43(1), 946–951 (2022). https://doi.
org/https://doi.org/10.1080/01430750.2019.1682041

19. Lv, X., Cheng, X., Tang, Y.m., et al.: Short-term power load forecasting based
on balanced knn. In: IOP Conference series: materials science and engineer-
ing. vol. 322, p. 072058. IOP Publishing (2018). https://doi.org/10.1088/
1757-899X/322/7/072058

https://doi.org/10.1109/ACCESS.2021.3120731
https://doi.org/10.1109/ACCESS.2021.3120731
https://doi.org/https://doi.org/10.1007/s42835-021-00768-8
https://doi.org/https://doi.org/10.1007/s42835-021-00768-8
https://doi.org/https://doi.org/10.1007/s42835-021-00768-8
https://doi.org/https://doi.org/10.1007/s42835-021-00768-8
https://doi.org/https://doi.org/10.7717/peerj-cs.623
https://doi.org/https://doi.org/10.7717/peerj-cs.623
https://doi.org/https://doi.org/10.7717/peerj-cs.623
https://doi.org/https://doi.org/10.7717/peerj-cs.623
https://doi.org/https://doi.org/10.3390/app13137933
https://doi.org/https://doi.org/10.3390/app13137933
https://doi.org/https://doi.org/10.3390/app13137933
https://doi.org/https://doi.org/10.3390/app13137933
https://www.datatechnotes.com/2019/02/regression-model-accuracy-mae-mse-rmse.html
https://www.datatechnotes.com/2019/02/regression-model-accuracy-mae-mse-rmse.html
https://doi.org/https://doi.org/10.3390/math11051068
https://doi.org/https://doi.org/10.3390/math11051068
https://doi.org/https://doi.org/10.3390/math11051068
https://doi.org/https://doi.org/10.3390/math11051068
https://www.geeksforgeeks.org/ml-gradient-boosting/
https://www.geeksforgeeks.org/ml-gradient-boosting/
https://doi.org/https://doi.org/10.3390/en16031480
https://doi.org/https://doi.org/10.3390/en16031480
https://doi.org/10.2478/jlst-2020-0004
https://doi.org/10.2478/jlst-2020-0004
https://doi.org/10.1109/CCDC49329.2020.9164387
https://doi.org/10.1109/CCDC49329.2020.9164387
https://doi.org/10.1109/CCDC49329.2020.9164387
https://doi.org/10.1109/CCDC49329.2020.9164387
https://doi.org/https://doi.org/10.3390/en15218079
https://doi.org/https://doi.org/10.3390/en15218079
https://doi.org/https://doi.org/10.1080/01430750.2019.1682041
https://doi.org/https://doi.org/10.1080/01430750.2019.1682041
https://doi.org/https://doi.org/10.1080/01430750.2019.1682041
https://doi.org/https://doi.org/10.1080/01430750.2019.1682041
https://doi.org/10.1088/1757-899X/322/7/072058
https://doi.org/10.1088/1757-899X/322/7/072058
https://doi.org/10.1088/1757-899X/322/7/072058
https://doi.org/10.1088/1757-899X/322/7/072058


16 Hagos L.Shifare et al.

20. Marrero, L., García-Santander, L., Carrizo, D., Ulloa, F.: An application of load
forecasting based on arima models and particle swarm optimization. In: 2019 11th
International Symposium on Advanced Topics in Electrical Engineering (ATEE).
pp. 1–6. IEEE (2019). https://doi.org/https://doi.org/10.1109/ATEE.2019.
8724891

21. Martínez, F., Frías, M.P., Pérez, M.D., Rivera, A.J.: A methodology for ap-
plying k-nearest neighbor to time series forecasting. Artificial Intelligence Re-
view 52(3), 2019–2037 (2019). https://doi.org/https://doi.org/10.1007/
s10462-017-9593-z

22. Mediavilla, M.A., Dietrich, F., Palm, D.: Review and analysis of artificial in-
telligence methods for demand forecasting in supply chain management. Proce-
dia CIRP 107, 1126–1131 (2022). https://doi.org/https://doi.org/10.1016/
j.procir.2022.05.119

23. Mienye, I.D., Sun, Y.: A survey of ensemble learning: Concepts, algorithms, appli-
cations, and prospects. IEEE Access 10, 99129–99149 (2022). https://doi.org/
10.1109/ACCESS.2022.3207287

24. Musbah, H., El-Hawary, M.: Sarima model forecasting of short-term electrical load
data augmented by fast fourier transform seasonality detection. In: 2019 IEEE
Canadian Conference of Electrical and Computer Engineering (CCECE). pp. 1–4.
IEEE (2019). https://doi.org/https://doi.org/10.1109/CCECE.2019.8861542

25. Mustapha, A., Mohamed, L., Ali, K.: An overview of gradient descent algorithm
optimization in machine learning: Application in the ophthalmology field. In: Smart
Applications and Data Analysis: Third International Conference, SADASC 2020,
Marrakesh, Morocco, June 25–26, 2020, Proceedings 3. pp. 349–359. Springer
(2020). https://doi.org/https://doi.org/10.1007/978-3-030-45183-7_27

26. Neeraj, Gupta, P., Tomar, A.: Deep learning techniques for load forecasting. In:
Prediction Techniques for Renewable Energy Generation and Load Demand Fore-
casting, pp. 177–198. Springer (2023). https://doi.org/https://doi.org/10.
1007

27. Nie, P., Roccotelli, M., Fanti, M.P., Ming, Z., Li, Z.: Prediction of home energy
consumption based on gradient boosting regression tree. Energy Reports 7, 1246–
1255 (2021). https://doi.org/https://doi.org/10.1016/j.egyr.2021.02.006

28. Pasari, S., Shah, A.: Time series auto-regressive integrated moving average model
for renewable energy forecasting. In: Enhancing Future Skills and Entrepreneur-
ship: 3rd Indo-German Conference on Sustainability in Engineering. pp. 71–77.
Springer International Publishing Cham (2020). https://doi.org/https://doi.
org/10.1007/978-3-030-44248-4_7

29. Paudel, S., Elmitri, M., Couturier, S., Nguyen, P.H., Kamphuis, R., Lacarrière, B.,
Le Corre, O.: A relevant data selection method for energy consumption prediction
of low energy building based on support vector machine. Energy and Buildings
138, 240–256 (2017). https://doi.org/https://doi.org/10.1016/j.enbuild.
2016.11.009

30. Ruiz-Abellón, M.D.C., Gabaldón, A., Guillamón, A.: Load forecasting for a campus
university using ensemble methods based on regression trees. Energies 11(8), 2038
(2018). https://doi.org/https://doi.org/10.3390/en11082038

31. Salehimehr, S., Taheri, B., Sedighizadeh, M.: Short-term load forecasting in smart
grids using artificial intelligence methods: A survey. The Journal of Engineering
2022(12), 1133–1142 (2022). https://doi.org/https://doi.org/10.1049/tje2.
12183

32. Sallam, A., Malik, O.: Load Forecasting, pp. 41–71 (10 2018). https://doi.org/
10.1002/9781119509332.ch4

https://doi.org/https://doi.org/10.1109/ATEE.2019.8724891
https://doi.org/https://doi.org/10.1109/ATEE.2019.8724891
https://doi.org/https://doi.org/10.1109/ATEE.2019.8724891
https://doi.org/https://doi.org/10.1109/ATEE.2019.8724891
https://doi.org/https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/https://doi.org/10.1016/j.procir.2022.05.119
https://doi.org/https://doi.org/10.1016/j.procir.2022.05.119
https://doi.org/https://doi.org/10.1016/j.procir.2022.05.119
https://doi.org/https://doi.org/10.1016/j.procir.2022.05.119
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/https://doi.org/10.1109/CCECE.2019.8861542
https://doi.org/https://doi.org/10.1109/CCECE.2019.8861542
https://doi.org/https://doi.org/10.1007/978-3-030-45183-7_27
https://doi.org/https://doi.org/10.1007/978-3-030-45183-7_27
https://doi.org/https://doi.org/10.1007
https://doi.org/https://doi.org/10.1007
https://doi.org/https://doi.org/10.1007
https://doi.org/https://doi.org/10.1007
https://doi.org/https://doi.org/10.1016/j.egyr.2021.02.006
https://doi.org/https://doi.org/10.1016/j.egyr.2021.02.006
https://doi.org/https://doi.org/10.1007/978-3-030-44248-4_7
https://doi.org/https://doi.org/10.1007/978-3-030-44248-4_7
https://doi.org/https://doi.org/10.1007/978-3-030-44248-4_7
https://doi.org/https://doi.org/10.1007/978-3-030-44248-4_7
https://doi.org/https://doi.org/10.1016/j.enbuild.2016.11.009
https://doi.org/https://doi.org/10.1016/j.enbuild.2016.11.009
https://doi.org/https://doi.org/10.1016/j.enbuild.2016.11.009
https://doi.org/https://doi.org/10.1016/j.enbuild.2016.11.009
https://doi.org/https://doi.org/10.3390/en11082038
https://doi.org/https://doi.org/10.3390/en11082038
https://doi.org/https://doi.org/10.1049/tje2.12183
https://doi.org/https://doi.org/10.1049/tje2.12183
https://doi.org/https://doi.org/10.1049/tje2.12183
https://doi.org/https://doi.org/10.1049/tje2.12183
https://doi.org/10.1002/9781119509332.ch4
https://doi.org/10.1002/9781119509332.ch4
https://doi.org/10.1002/9781119509332.ch4
https://doi.org/10.1002/9781119509332.ch4


Comparative Analysis of STLF Using ML 17

33. Santos, M.L., García, S.D., García-Santiago, X., Ogando-Martínez, A., Camarero,
F.E., Gil, G.B., Ortega, P.C.: Deep learning and transfer learning techniques ap-
plied to short-term load forecasting of data-poor buildings in local energy com-
munities. Energy and Buildings 292, 113164 (2023). https://doi.org/https:
//doi.org/10.1016/j.enbuild.2023.113164

34. Sheppard, C.: Tree-based machine learning algorithms: Decision trees, random
forests, and boosting. Clinton Sheppard (2019)

35. Silva, J., Praça, I., Pinto, T., Vale, Z.: Energy consumption forecasting using
ensemble learning algorithms. In: Distributed Computing and Artificial Intelli-
gence, 16th International Conference, Special Sessions. pp. 5–13. Springer (2020).
https://doi.org/https://doi.org/10.1007/978-3-030-23946-6_1

36. Subbiah, S.S., Chinnappan, J.: An improved short term load forecasting with
ranker based feature selection technique. Journal of Intelligent & Fuzzy Systems
39(5), 6783–6800 (2020). https://doi.org/10.3233/JIFS-191568

37. Sundaram, R.B.: Gradient boosting algorithm: A complete guide for beginners.
analyticsvidhya (2021)

38. Suwanda, R., Syahputra, Z., Zamzami, E.M.: Analysis of euclidean distance and
manhattan distance in the k-means algorithm for variations number of centroid
k. In: Journal of Physics: Conference Series. vol. 1566, p. 012058. IOP Publishing
(2020). https://doi.org/10.1088/1742-6596/1566/1/012058

39. Touzani, S., Granderson, J., Fernandes, S.: Gradient boosting machine for modeling
the energy consumption of commercial buildings. Energy and Buildings 158, 1533–
1543 (2018). https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.
039

40. Tudose, A.M., Picioroaga, I.I., Sidea, D.O., Bulac, C., Boicea, V.A.: Short-term
load forecasting using convolutional neural networks in covid-19 context: the
romanian case study. Energies 14(13), 4046 (2021). https://doi.org/https:
//doi.org/10.3390/en14134046

41. Valgaev, O., Kupzog, F., Schmeck, H.: Building power demand forecasting using k-
nearest neighbours model–practical application in smart city demo aspern project.
CIRED-Open Access Proceedings Journal 2017(1), 1601–1604 (2017)

42. Yiling, H., Shaofeng, H.: A short-term load forecasting model based on im-
proved random forest algorithm. In: 2020 7th International Forum on Electri-
cal Engineering and Automation (IFEEA). pp. 928–931. IEEE (2020). https:
//doi.org/10.1109/IFEEA51475.2020.00195

https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113164
https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113164
https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113164
https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113164
https://doi.org/https://doi.org/10.1007/978-3-030-23946-6_1
https://doi.org/https://doi.org/10.1007/978-3-030-23946-6_1
https://doi.org/10.3233/JIFS-191568
https://doi.org/10.3233/JIFS-191568
https://doi.org/10.1088/1742-6596/1566/1/012058
https://doi.org/10.1088/1742-6596/1566/1/012058
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.039
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.039
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.039
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.039
https://doi.org/https://doi.org/10.3390/en14134046
https://doi.org/https://doi.org/10.3390/en14134046
https://doi.org/https://doi.org/10.3390/en14134046
https://doi.org/https://doi.org/10.3390/en14134046
https://doi.org/10.1109/IFEEA51475.2020.00195
https://doi.org/10.1109/IFEEA51475.2020.00195
https://doi.org/10.1109/IFEEA51475.2020.00195
https://doi.org/10.1109/IFEEA51475.2020.00195

	Comparative Analysis of Short-Term Load Forecasting Using Machine Learning Techniques

